Calificación

ESI BUCEO -EXÁMEN DE INTRUCCIÓN A LA COMPUTACIÓN

Para los alumnos reglamentados: son obligatorios los ejercicios 1, 2 y 3 y deben elegir uno de los dos ejercicios 4 o 5.

<u>Para los alumnos libres:</u> deben realizar todos los ejercicios planteados y el puntaje se calculará en función de esto.

1 p

1) De 100 personas que visitaron la ciudad, 55 visitaron un museo, 44 visitaron el zoológico y 20 ambas instalaciones. ¿Cuántas personas no visitaron ni el zoo ni el museo?

1 p

2) Siendo U= $\{0,1,2,3,4,5,6,7,8,9,10\}$

$$A = \{x/x \in N \land 5 \le x \le 10\}$$

$$B = \{x/x \in N \land 1 \le x \le 5\}$$

Hallar:

a)
$$(A \cup A) - (B \cap B) =$$

b)
$$(B \cap A) \Delta (B \cap A) =$$

6 p

3)

a) Definir Producto Cartesiano. Dar un ejemplo.

b) Definir Relación. Dar un ejemplo.

c) Dado el Producto Cartesiano A x B = $\{(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)\}$ construir una Relación R1 conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R1 = $\{(x, y) / y = x + 2\}$

d) Definir Función.

e) ¿Es inyectiva esta función: $f(x) = x^2$ del conjunto de los números naturales \mathbb{N} a \mathbb{N} ?

f) ¿Es inyectiva la función anterior si es del dominio de los enteros Z?

4 p

4) Dado el grafo:

a) Es un grafo dirigido? Justifique.

b) Se puede hallar un ciclo Hamilton? Si es así, márquelo, sino, diga porqué.

c) Calcule el grado de cada vértice.

d) Pondere cada arista para que el camino {1,2,3,5} valga 3.

4 p

Para universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sean $A = \{2,4,6,8,10\}$, $B = \{2,4\}$, $C = \{x/x \in U \land 3 < x < 7\}$ y $D = \{x/x \in U \land x \le 4\}$.

a). Determinar C y D por extensión y A por comprensión.

b) Determine lo siguiente:

1.
$$(C-B)' \cap B$$

2.
$$(A \cup B) \cup C$$

4. ({}
$$\cap$$
 B) \cup B =

c). Determinar si las siguientes proposiciones son verdaderas o falsas:

$$1. A \subseteq U$$

2.
$$C \subset A$$

$$3.2 \subset A$$

$$4 R \subset C$$

ESI BUCEO -EXÁMEN DE INTRUCCIÓN A LA COMPUTACIÓN

Feb. 2016

Para los alumnos reglamentados: son obligatorios los ejercicios 1, 2 y 3 y deben elegir uno de los dos ejercicios 4 o 5.

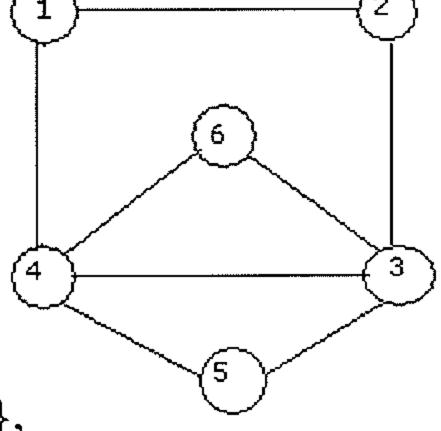
Para los alumnos libres: deben realizar todos los ejercicios planteados y el puntaje se calculará en función de esto.

- 1 p
- 1) De 100 personas que visitaron la ciudad, 55 visitaron un museo, 44 visitaron el zoológico y 20 ambas instalaciones. ¿Cuántas personas no visitaron ni el zoo ni el museo?
- 1 p
- 2) Siendo U= $\{0,1,2,3,4,5,6,7,8,9,10\}$

$$A = \{x/x \in \mathbb{N} \land 5 \le x \le 10\}$$

$$B = \{x/x \in N \land 1 \le x \le 5\}$$

Hallar:


a)
$$(A \cup A) - (B \cap B) = A - B = \{6,7,8.9.10\}$$

b)
$$(B \cap A) \Delta (B \cap A) = \emptyset$$

- 6 p
- a) Definir Producto Cartesiano. Dar un ejemplo.
- b) Definir Relación. Dar un ejemplo.
- c) Dado el Producto Cartesiano A x B = $\{(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)\}$ construir una Relación R1 conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer componente, dicho de otro modo, R1 = $\{(x, y)/y = x + 2\}$

$$R1 = \{(2, 4), (3, 5)\}$$

- d) Definir Función.
- e) ¿Es inyectiva esta función: $f(x) = x^2$ del conjunto de los números naturales \mathbb{N} a \mathbb{N} ? si
- f) ¿Es inyectiva la función anterior si es del dominio de los enteros Z? no por los números negativos
- 4 p
- 4) Dado el grafo:
 - a) Es un grafo dirigido? Justifique.
 - b) Se puede hallar un ciclo Euleriano? Si es así, marquelo, sino, diga porqué.
 - c) Calcule el grado de cada vértice.
 - d) Pondere cada arista para que el camino {1,2,3,5} valga 3.

- 4 p
- 5) Para universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sean $A = \{2,4,6,8,10\}$, $B = \{2,4\}$, $C = \{x/x \in U \land 3 < x < 7\}$ y $D = \{x/x \in U \land x \le 4\}$.
 - a). Determinar C y D por extensión y A por comprensión. $C=\{4,5,6\}$ $D=\{1,2,3,4\}$ A= pares
 - b) Determine lo siguiente:

1.
$$(C - B)' \cap B$$
 {2,4}

2.
$$(A \cup B) \cup C \{2,4,5,6,8,10\}$$

3.
$$(A \Delta B)'$$
 {1,2,3,4,5,7,9}

4.
$$(\{\} \cap B) \cup B = \{2,4\}$$

c). Determinar si las siguientes proposiciones son verdaderas o falsas:

$$1. A \subseteq U V$$

2.
$$C \subset A$$
 F

$$3.2 \subset A$$
 F

$$4. B \subset C F$$

d). Determinar cardinal de (C - B)' \cap B #= 2

Calificación

ESI BUCEO -EXÁMEN DE INTRUCCIÓN A LA COMPUTACIÓN

Para los alumnos reglamentados: son obligatorios los ejercicios 1, 2 y 3 y deben elegir uno de los dos ejercicios 4 o 5.

Para los alumnos libres: deben realizar todos los ejercicios planteados y el puntaje se calculará en función de esto.

1 p

1) De 100 personas que visitaron la ciudad, 55 yisitaron un museo, 44 visitaron el zoológico y 20 ambas instalaciones. ¿Cuántas personas no visitaron ni el zoo ni el museo?

1 p

2) Siendo $U=\{0,1,2,3,4,5,6,7,8,9,10\}$

A=
$$\{x/x \in N \land 5 \le x \le 10\}$$

B= $\{x/x \in N \land 1 \le x \le 5\}$

B=
$$\{x/x \in \mathbb{N} \land 1 \le x \le 5\}$$

Hallar:

3)

a)
$$(A \lor A) - (B \cap B) = A - B = \{6,7,8.9.10\}$$

b)
$$(B \cap A) \Delta (B \cap A) = \emptyset$$

6 p

a) Definir Producto Cartesiano. Dar un ejemplo.

b) Definir Relación. Dar un ejemplo.

c) Dado el Producto Cartesiano A x B = $\{(2, 1), (2, 4), (2, 5), (3, 1), (3, 4), (3, 5)\}$ construir una Relación R1 conformada por todos los pares que cumplen con que el segundo componente es dos unidades mayor que el primer compónente, dicho de otro modo, $R1 = \{(x, y) \mid y = x + 2\}$

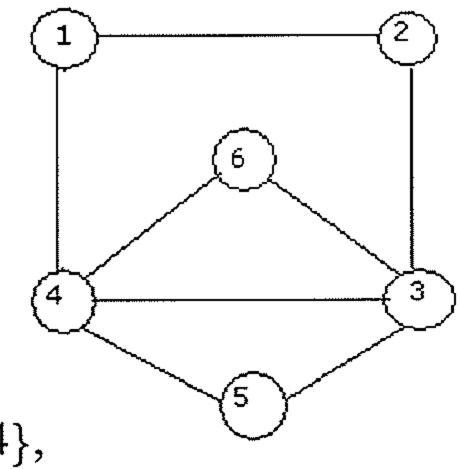
 $R1 = \{(2, 4), (3, 5)\}$

d) Definir Función.

e) ¿Es inyectiva esta función: $f(x) = x^2$ del conjunto de los números naturales \mathbb{N} a \mathbb{N} ? si

f) ¿Es inyectiva la función anterior si es del dominio de los enteros Z? no por los números negativos

4 p


4) Dado el grafo:

a) Es un grafo dirigido? Justifique.

Se puede hallar un ciclo Euleriano? Si es así, marquelo, sino, diga porqué.

Calcule el grado de cada vértice.

d) Pondere cada arista para que el camino {1,2,3,5} valga 3.

Para universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sean $A = \{2,4,6,8,10\}$, $B = \{2,4\}$, $C = \{x/x \subseteq U \land 3 < x < 7\} \ y \ D = \{x/x \subseteq U \land x \le 4\}.$

a). Determinar C y D por extensión y A por comprensión. $C=\{4,5,6\}$ $D=\{1,2,3,4\}$ A= pares

b) Determine lo siguiente:

1.
$$(C - B)' \cap B$$
 {2,4}

2.
$$(A \cup B) \cup C \quad \{2,4,5,6,8,10\}$$

3.
$$(A \Delta B)$$
' {1,2,3,4,5,7,9}

4.
$$(\{\} \cap B) \cup B = \{2,4\}$$

c). Determinar si las siguientes proposiciones son verdaderas o falsas:

$$1. A \subseteq U V$$

2.
$$C \subset A$$
 F

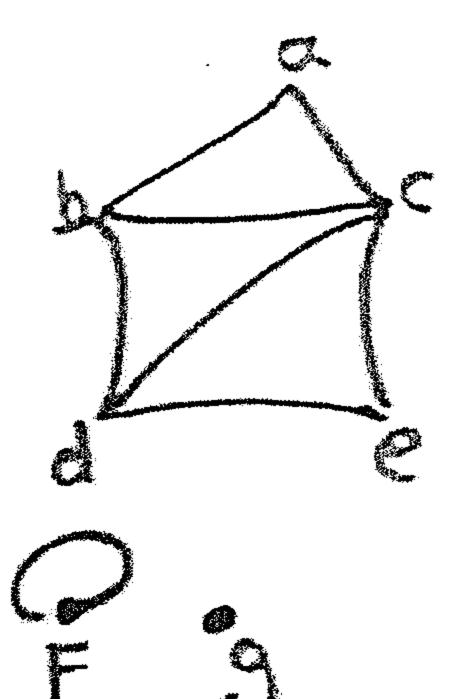
$$3.2 \subset A$$
 F

$$4. B \subset C F$$

d). Determinar cardinal de (C - B)' \cap B #= 2

Nombre		Calificación Escrito
		Oral
	ESCUELA SUPERIOR DE INFORMÁTICA	DE BUCEO
	EXÁMEN DE INTRUCCIÓN A LA COMP	:
	Febrero/2015	
Ejercicio 1		
a) Defina FU	NCIÓN	
b) Defina RE	·	
c) Defina PR	ODUCTO CARTESIANO	
d) Defina CO	NJUNTO	
e) LIBRE: de	efina Conjunto Universo	
<u></u>		
Ejercicio 2		
a). Para universo	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sean A	$= \{2,4,6,8,10\}, B = \{2,4\},$
$C = \{x/x \subseteq U \land A\}$	$3 < x < 7$ y D = $\{x/x \in U \land x \le 4\}$. I	Determine lo siguiente:
	1. $(C-B)' \cap B$	
	2. $(A \cup B) \cup C$	
	3. (A Δ B)'	
	4. ({ } ∩ B) ∪ B	
b). Determinar C y	D por extensión y A por comprensión.	
· · · · · · · · · · · · · · · · · · ·	as siguientes proposiciones son verdade	
	$1.A \subseteq U$	
	2. C ⊂ A	
	3. 2 ⊂ A	
	4. B ⊂ C	
d) LIRRE : Deterr	ninar cardinal de $(C - B)$ ' $\cap B$	
u). Hillian. Deteri	innar caramar ac (C D) (1)	
Ejercicio 3		
· · · · · · · · · · · · · · · · · · ·	3}, determinar y explicar cuáles son Re	elaciones en AXA:
$R1 = \{(1,1); (2,2)\}$		JIGOTOTIOS OTI 1 K2 K2 K.
); (2,3); (3,1); (3,3)}	
$R3 = \{(1,1); (2,3)\}$		
	relaciones de la parte <u>a</u> determine su gr	rafo
, 		
Ejercicio 4		
a) Definir grafo.		

- b) Definir y calcular el grado de cada vértice.
- c) LIBRE: realizar la matríz de adyacencia de dicho grafo.


<u>Ejercicio 5</u>

Teniendo las funciones:

$$a(x)=x2+2x$$

$$b(x)=4x+3$$

- a)Encontrar la imagen de 3 de a y b
- b)Encontrar la preimagen de 0 de a y b
- c) <u>LIBRE</u> Componer: aob(x)= boa(x)=

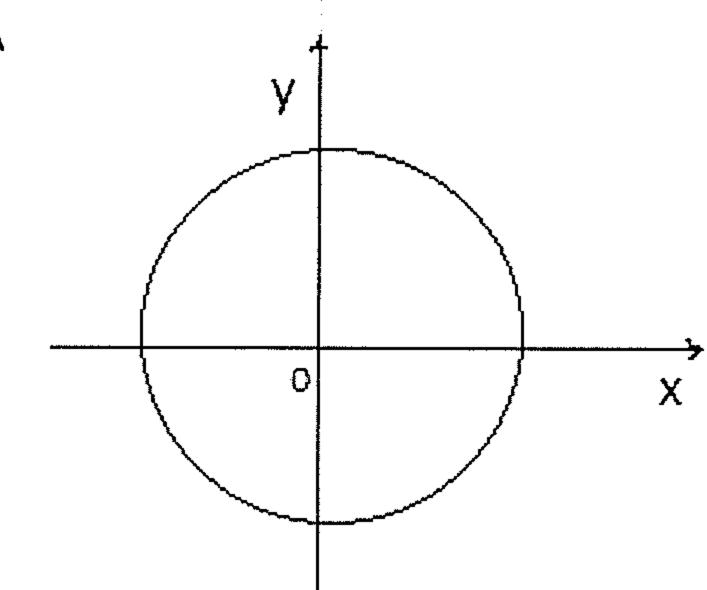
Examen de Introducción a la Computación

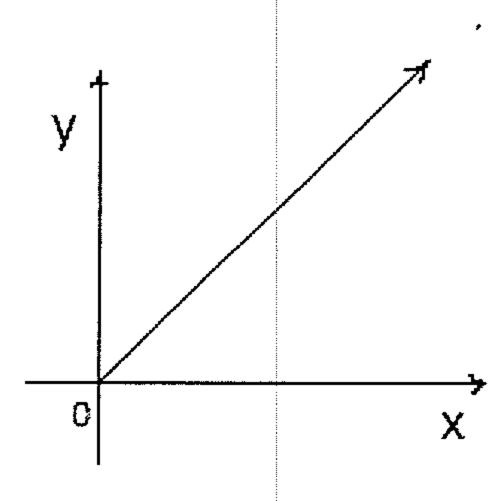
Ejercicio 1)

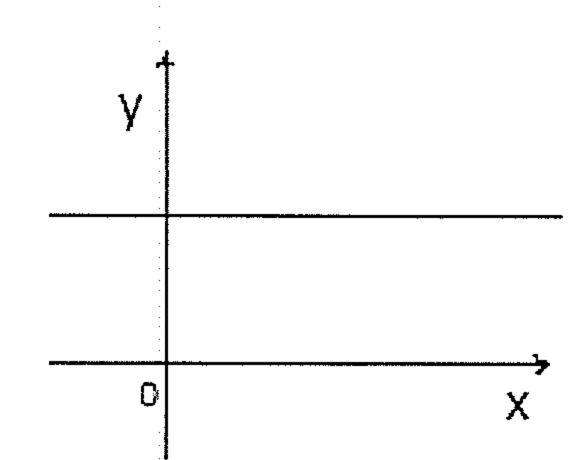
Dado el conjunto universal $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ se plantean los subconjuntos

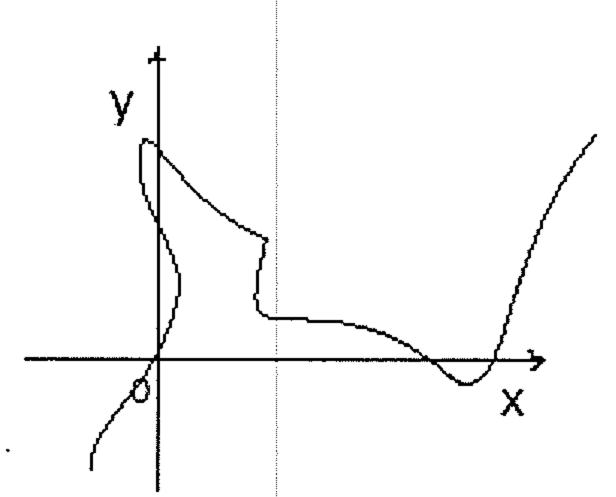
 $A=\{x/x \in U \land x >= 3 \land x=2n\}$ $B=\{y/y \in U \land y=2n+1\}$ $C=\{3,6,9\}$ $D=\{2,3,8,9\}$

$$B = \{y/y \in U \land y = 2n+1\}$$


$$C = \{3,6,9\}$$


$$D = \{2,3,8,9\}$$


- 1) Teórico:
 - a) Establecer y definir la expresión en las cuales están establecidos los conjuntos.
 - b) Expresar los conjuntos A y B y los Conjuntos C y D de forma distinta a la planteada en la letra
- Realizar:


- a) (AUB)' d) (B⊕C) ∩ C b) (C∩D) U A e) (U∩A) (B∩A)
- c) (C-D) \cap A f) A U (D UB)'
- 3) Hallar AXA y CXC luego efectuar R1 = x+y > 12 y R2 = x>y respectivamente esbozando el grafo correspondiente a cada relación.
- Determinar si las siguientes gráficas son funciones; de serlo determinar sus características.

Α

N	\cap	m	h	r۵	
1 A	U	1 1 1	V		

Calificación	Éscrito	
		

Oral

ESCUELA SUPERIOR DE INFORMÁTICA DE BUCEO EXÁMEN DE INTRUCCIÓN A LA COMPUTACIÓN

Febrero/2015

Ejercicio 1

- a) Defina FUNCIÓN
- b) Defina RELACIÓN
- c) Defina PRODUCTO CARTESIANO
- d) Defina CONJUNTO
- e) LIBRE: defina Conjunto Universo

Ejercicio 2

a). Para universo $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ sean $A = \{2,4,6,8,10\}$, $B = \{2,4\}$, $C = \{x/x \in U \land 3 \le x \le 7\}$ y $D = \{x/x \in U \land x \le 4\}$. Determine lo siguiente:

- 1. $(C-B)' \cap B$
- 2. $(A \cup B) \cup C$
- $3. (A \Delta B)$
- 4. $(\{\} \cap B) \cup B$
- b). Determinar C y D por extensión y A por comprensión.
- c). Determinar si las siguientes proposiciones son verdaderas o falsas:
 - $1. A \subseteq U$
 - 2. $C \subset A$
 - $3.2 \subset A$
 - $4. B \subset C$
- d). LIBRE: Determinar cardinal de $(C B)' \cap B$

Ejercicio 3

a) Para $A = \{1, 2, 3\}$, determinar y explicar cuáles son Relaciones en AXA:

$$R1 = \{(1,1); (2,2); (4,4)\}$$

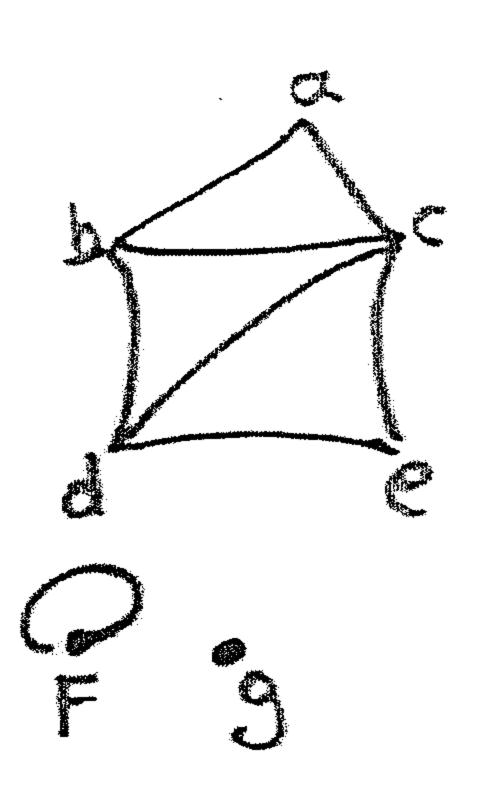
$$R2 = \{(1,2); (2,2); (2,3); (3,1); (3,3)\}$$

$$R3 = \{(1,1); (2,3); (3,2)\}$$

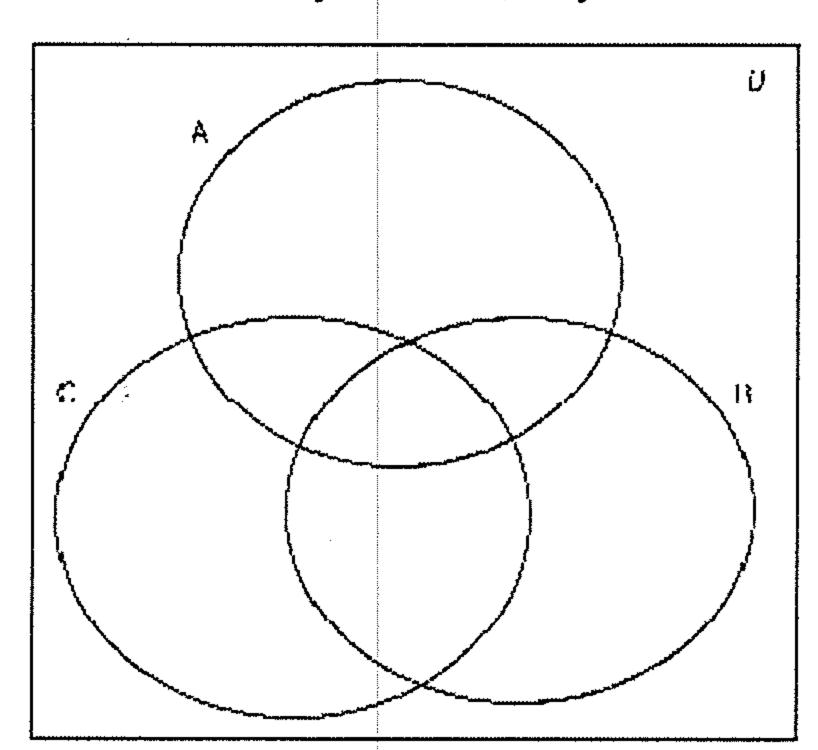
b) LIBRE: Para las relaciones de la parte a determine su grafo

Ejercicio 4

- a) Definir grafo.
- b) Definir y calcular el grado de cada vértice.
- c) LIBRE: realizar la matríz de adyacencia de dicho grafo.


<u>Ejercicio 5</u>

Teniendo las funciones:


$$a(x)=x2+2x$$

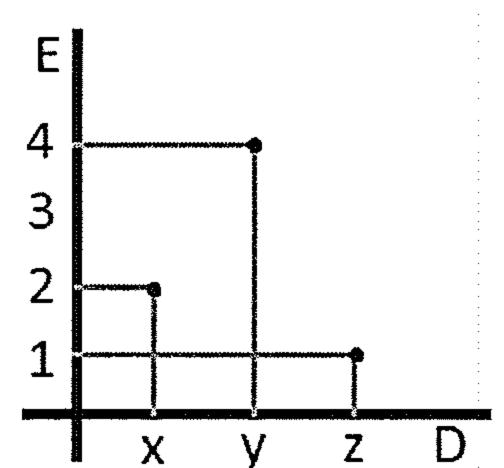
$$b(x)=4x+3$$

- a)Encontrar la imagen de 3 de a y b
- b)Encontrar la preimagen de 0 de a y b
- c) LIBRE Componer: aob(x)= boa(x)=

[Ej.1 CONJUNTOS]Completar el diagrama de Venn de los conjuntos A, B y C.

[Ej.2 RELACIONES]Sea el conjunto A={w;x;y;z} y una relación R en AxA:

$$R=\{(w;w);(x;x);(y;x);(y;y);(z;y)\}$$


Encontrar las propiedades de las relaciones. (en caso de no cumplir alguna, decir que pares faltan)

[Ej.3 FUNCIONES]

Sean los conjuntos: D={x;y;z}

$$E=\{1;2;3;4\}$$
 $F=\{a;b;c;d\}$

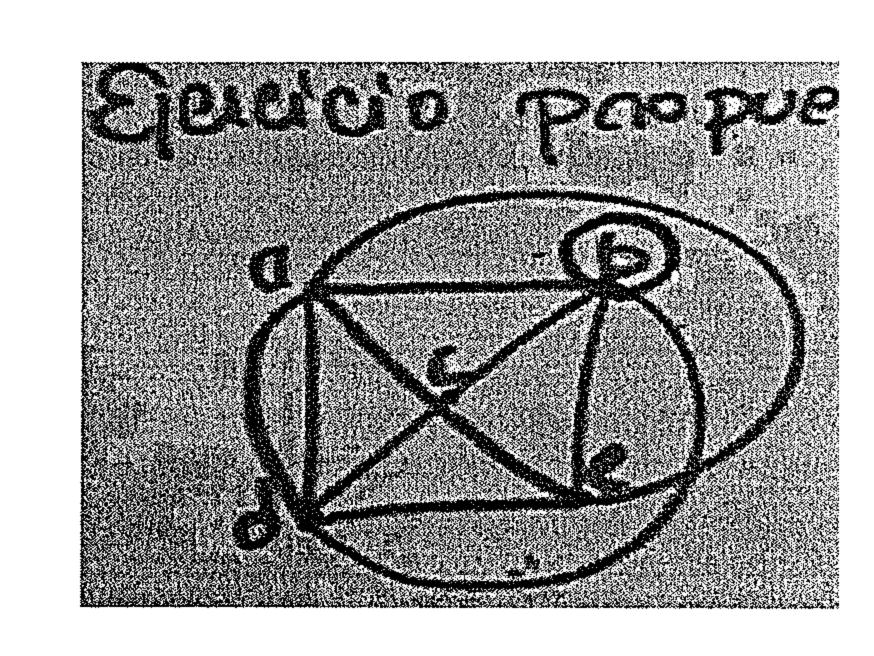
y tres funciones:

$$g(1)=b; g(2)=c; g(3)=d; g(4)=a;$$

$$h=\{(a;y);(b;z);(c;y);(d;x)\}$$

I) Representar (eligiendo de qué forma) las funciones: gof; hog; foh

- II) Estudiar las propiedades de las seis funciones: f, g, h, gof, hog, foh
- III) ¿Cuáles son invertibles? Representar sus inversas.


[Ej.4 GRAFOS]

- a) Dar la matriz de adyacencia de este grafo:
- b) Sea G un grafo con 7 vértices y $C=(v_1,v_3,v_5,v_4,v_5,v_7,v_6,v_1)$ un camino en G.

C es un camino hamiltoniano

C es un ciclo hamiltoniano

C no está bien definido

Exámen Introducción a la Computación E.S.I. febrero 2014

[Ej.1 CONJUNTOS]Completar el diagrama de Venn de los conjuntos A, B y C.

 $U=\{x \in \mathbb{N}/ 1 \le x \le 14 \text{ y x es par}\}$

An $C=\{2\}$

An $B=\{6\}$

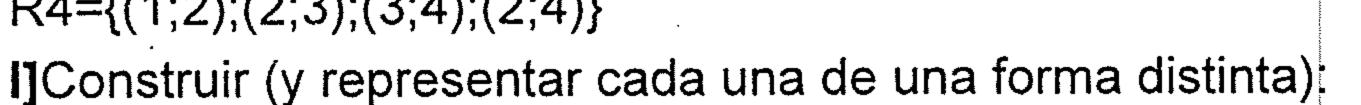
 $(A \cup B)^{c} = \{4; 8; 12\}$

 $C \setminus A = \{8; 14\}$

10 *∉* A

[Ej.2 CONJUNTOS] Expresar por

comprensión el conjunto


 $A=\{1;2;3;5;7;11\}$

[Ej.3 RELACIONES]Tenemos el

conjunto A={1;2;3;4} y las siguientes relaciones en AxA:

 $R1 = \{(1;1);(2;2);(3;3);(4;4)\}$ $R2 = \{(2;3);(3;2)\}$ $R3 = \{(1;1);(3;3)\}$

 $R4=\{(1;2);(2;3);(3;4);(2;4)\}$

 $Ra=(R1/R3) \cup \{(1;4);(4;1)\}$ Rb=R1 \(\text{R} R \text{C}=Ra \Delta R \text{B} \ Rd=Rb/\{(1;1);(4;4)\}

II]Estudiar las propiedades de:

R1, R4, Ra, Rb, Rc, Rd

[Ej.4 FUNCIONES]Si tenemos los conjuntos A={a;b;c;d} y B={1;2;3}

I] Crear las siguientes funciones (cuando sea posible):

f: A→B sin propiedades

g: B→A inyectiva

h: B→A sobreyectiva

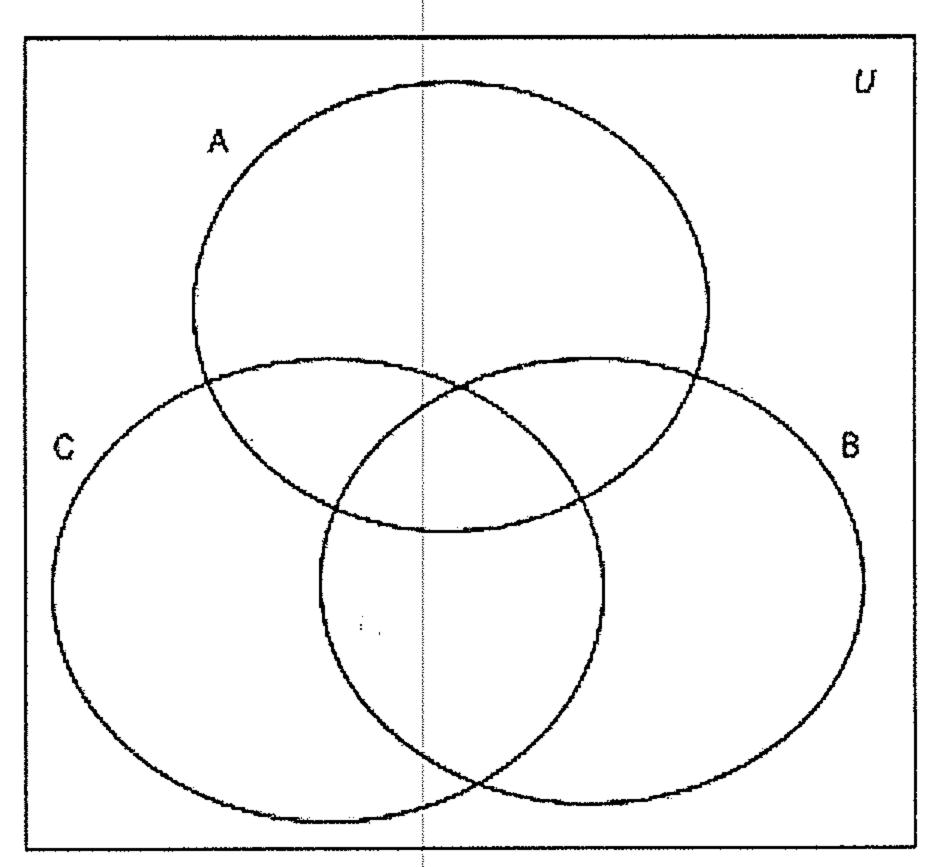
i: A→A biyectiva

II] Realizar las composiciones que se puedan hacer con estas funciones (de a dos por vez).

III] ¿Cuáles de estas funciones son invertibles?

[Ej.5`FUNCIONES]Sean las funciones:

$$a(x)=x^2-2x+3$$


$$b(x)=2x+5$$

$$c(x) = \frac{x+1}{r}$$

I] Calcular aob(x), cob(x), aoc(x) y boc(x)

II] Encontrar la imagen de 1 en coc(x)

III] Encontrar la preimagen de 19 en bob(x)

Exámen Introduccion Febrero 2013 E.S.I.

Conjuntos] Hacer un diagrama de Venn que represente a los conjuntos A, B y C con los siguientes datos:

$$U=\{a;b;c;d;e;f\}$$
 A \(\Omega\) B=\{b;d\} A \(\Omega\) C=\{d;f\}

$$A \cap B=\{b;d\}$$

$$A \cap C=\{d;f\}$$

$$a \in (A \cup B \cup C)^c$$

$$\#B = \#C + 1$$

Relaciones]Sea el conjunto D={1;2;3;4;5} y las siguientes relaciones en DxD:

$$Rc=\{(2;4);(4;2)\}$$

$$Rd=\{(3;5);(5;3)\}$$

$$R5=(Ra \cup Rc)/\{(3;2);(4;3)\}$$

II)Estudiar las propiedades de R1, R2, R3, R4 y R5

Funciones] Dados los conjuntos:

$$M=\{w;x;y;z\}$$

$$N=\{1;2;3;4\}$$

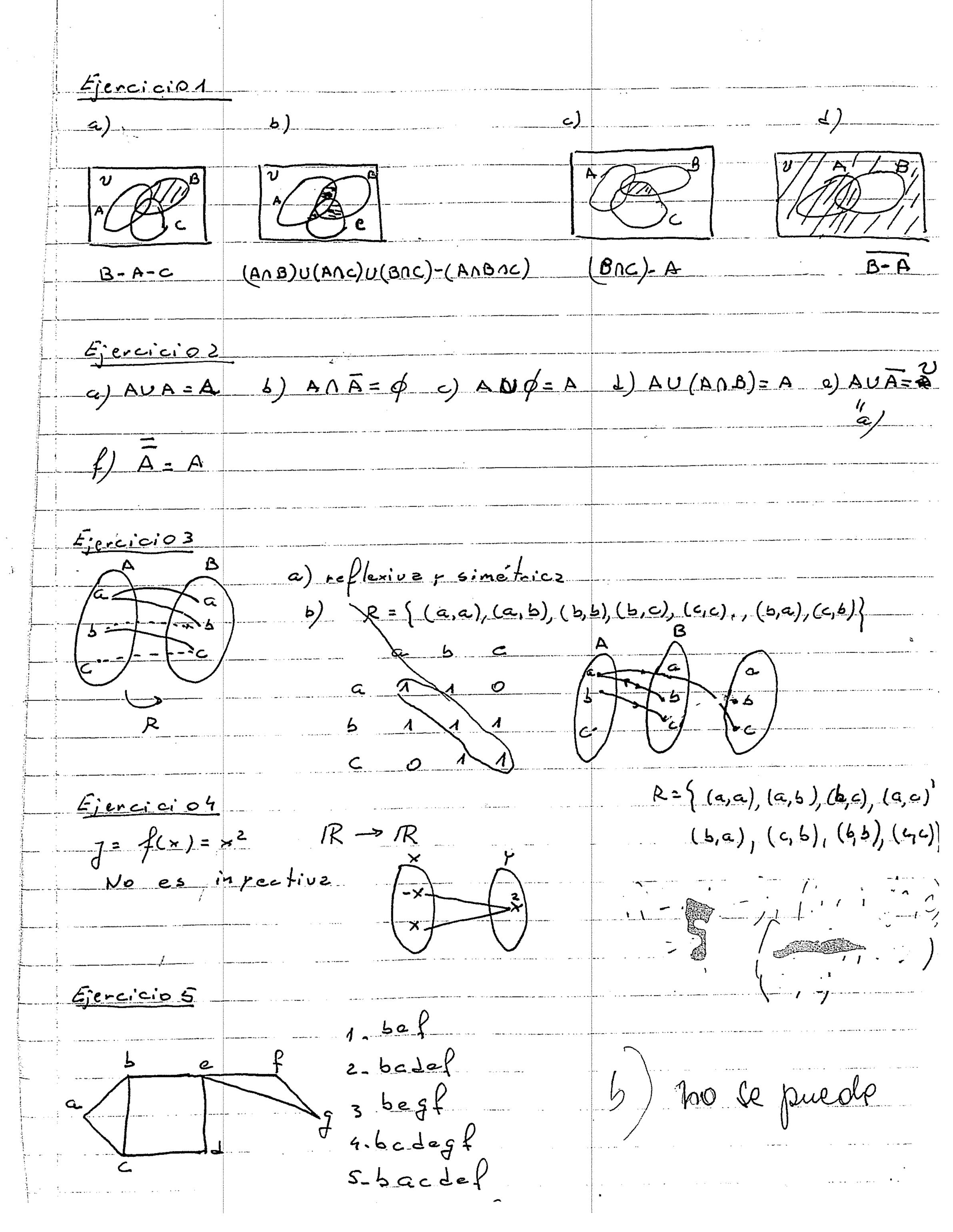
$$O={a;b;c}$$

Y las funciones:

$$i:M \rightarrow N i=\{(w;3);(x;2);(y;1);(z;4)\}$$

$$j:N \rightarrow O j=\{(1;c);(2;a);(3;b);(4;c)\}$$

$$k:O \rightarrow M k=\{(a;x);(b;y);(c;w)\}$$


a)Representar las funciones de tres maneras diferentes joi; koj; iok

- b)Estudiar las propiedades de i, j, k, joi, koj, iok
- c)¿Cuáles tienen inversa?

INMOD	UCCIONA LA COMP. 1	
	Rfor Johnish	
		<u></u>
	minologia de teoria de conjuntos, el conjunto que con	ARO C
ponde al érea raya		
a)	b) (2)	
A B	A B V A B V	
<u>Ejercicio</u> z		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	3 dos conjuntos cualcaquiera (Notación: A= Ac)
a) AUA b) ANA	c) AUD d) AU(ANB) e) AUA f) A	·
Ejercicio 3		
	ca.	<i>\</i>
6) F	are que sea transitiva y simetrica pero mo	
R	reflexiva.	
		···· · ····
Ejercicio 4		
Justifique su afirma	$R \rightarrow R$ fal que $j = f(x) = x^2$; Es injective?	
	***************************************	TOTAL STATE OF STATES THE OIL
Ejercicio 5	\ \frac{1}{2}	
; Cuantos caminos s	simples existen de ba f. Expréselos.	ABARBO ALVO

.

-

